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Abstract

We introduce a new method of maintaining a (k, ε)-coreset for clustering M -estimators over insertion-
only streams. Let (P,w) be a weighted set (where w : P → [0,∞) is the weight function) of points
in a ρ-metric space (meaning a set X equipped with a positive-semidefinite symmetric function D
such that D(x, z) ≤ ρ(D(x, y) + D(y, z)) for all x, y, z ∈ X ). For any set of points C, we define
COST(P,w,C) =

∑
p∈P

w(p) minc∈C D(p, c). A (k, ε)-coreset for (P,w) is a weighted set (Q, v) such
that for every set C of k points, (1 − ε)COST(P,w,C) ≤ COST(Q, v, C) ≤ (1 + ε)COST(P,w,C).
Essentially, the coreset (Q, v) can be used in place of (P,w) for all operations concerning the COST
function. Coresets, as a method of data reduction, are used to solve fundamental problems in
machine learning of streaming and distributed data.

M -estimators are functions D(x, y) that can be written as ψ(d(x, y)) where (X , d) is a true
metric (i.e. 1-metric) space. Special cases of M -estimators include the well-known k-median
(ψ(x) = x) and k-means (ψ(x) = x2) functions. Our technique takes an existing offline construction
for an M -estimator coreset and converts it into the streaming setting, where n data points arrive
sequentially. To our knowledge, this is the first streaming construction for any M -estimator that
does not rely on the merge-and-reduce tree. For example, our coreset for streaming metric k-means
uses O(ε−2k log k logn) points of storage. The previous state-of-the-art required storing at least
O(ε−2k log k log4 n) points.
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62:2 Streaming Coreset Constructions for M-Estimators

1 Introduction

In the streaming model of computation, the input arrives sequentially. This differs from
the random-access memory model (i.e. the offline setting) where the algorithm may freely
and repeatedly access the entire input. The goal of a streaming algorithm is to perform the
computation using a sublinear amount of memory.

A stream consists of n elements p1, . . . , pn. Sometimes the algorithm will be allowed
to pass over the stream multiple times, resulting in another parameter called the number
of passes. Our algorithm uses O(logn) memory and requires only a single pass over the
input stream.

Prior to the current work, the merge-and-reduce technique due to Har-Peled and Mazum-
dar [19] and Bentley and Sax [5] was used to maintain coresets on streams using an offline
coreset construction as a blackbox. For a brief review of this technique, see Section 4.1.
Suppose the offline construction’s space depends on ε as ε−a. In this paper we introduce
an alternative technique that reduces the multiplicative overhead from O(loga+1 n) to O(1)
when moving to the streaming setting. For example, the state-of-the-art k-median offline
coreset [6] has size O(ε−2k log k logn). The current paper improves the space requirement
from O(ε−2k log k log4 n) to O(ε−2k log k logn) to maintain the coreset on a stream. While
our method is not as general as merge-and-reduce (it requires a function to satisfy more than
just the “merge” and “reduce” properties, defined in Section 4.1), it is general enough to
apply to all M -estimators.

2 Definitions

We begin by defining a ρ-metric space. Let X be a set. If D : X × X → [0,∞) is
a symmetric positive-semidefinite function such that for every x, y, z ∈ X we have that
D(x, z) ≤ ρ(D(x, y) + D(y, z)) then we call (X , D) a ρ-metric space. Note that this is a
weakening of the triangle inequality, and at ρ = 1 we recover the definition of a metric
space. Clustering M -estimators in a metric space can be re-cast as k-median in a ρ-metric
space. For example, metric k-means in the space (X , d) is reducible to 2-metric k-median in
the space (X , D) using D(·, ·) = d(·, ·)2. See Table 1 for more examples. We work in this
slightly abstract language since it allows a single proof to naturally generalize our results to
any M -estimator.

A weighted set (P,w) is a set P ⊂ X along with a weight function w : P → [0,∞). As
usual, we define the distance between a point and a set D(p, Z) = minz∈Z D(p, Z). Let

COST(P,w,Z) =
∑
p∈P

w(p)D(p, Z)

The ρ-metric k-median problem is, given input (P,w) and an integer k ≥ 1, to find a set C of
k points in X that minimizes COST(P,w,C). We use OPTk(P ) to denote the minimal value.
Other works have shown that for small enough ε, it is NP-Hard to even compute a (1 + ε)
approximation for k-means or k-median when k is part of the input (see the Related Work
section of [4] for a survey of hardness results). Therefore weaker definitions of approximation
have been introduced. The notion of a bicriterion approximation is well-known; we state a
slightly more verbose definition that suits our needs. The difference is that usually the map
f is implicit, simply mapping a point to a nearest center.
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I Definition 1 ((α, β)-approximation). For α, β ≥ 1, an (α, β)-approximation for the k-
median clustering of a weighted set (P,w) is a weighted set (B, v) along with a map f : P → B

such that:
1.
∑
p∈P w(p)D(p, f(p)) ≤ αOPTk(P )

2. |B| ≤ βk
3. v(b) =

∑
p∈f−1(b) w(p) for every b ∈ B

Observe that a (1, 1)-approximation is an optimal solution. We now define a coreset, the
datastructure that we compute in this paper.

I Definition 2 ((k, ε)-coreset). For k ∈ N and ε ∈ (0, 1), a (k, ε)-coreset for a weighted set
(P,w) is a weighted set (Q, v) such that for every Z ∈ X k we have (1− ε)COST(P,w,Z) ≤
COST(Q, v, Z) ≤ (1 + ε)COST(P,w,Z).

Coresets with possibly negative weight functions have been considered [13]. However,
computing approximate solutions on these coresets in polynomial-time remains an open
problem, so we restrict our definition to non-negative weight functions to ensure that an
approximate solution can be quickly produced [16, 8]. This implies a PTAS for Euclidean
space and a polynomial-time 2τ(1 + ε)-approximation for general metric spaces (where τ is
the best polynomial-time approximation factor for the problem in the offline setting). This
factor of 2τ(1 + ε) is well-known in the literature, see [9, 7, 16] for details.

3 Our Techniques

In this work, we provide an alternative technique for constructing a ρ-metric k-median coreset
in the streaming setting. Instead of using the merge-and-reduce tree (see Section 4.1) where
each node of the tree uses the offline construction, we perform a single offline construction in
the streaming setting. This reduces O(loga+1 n) multiplicative overhead1 of merge-and-reduce
to O(1) overhead.

The offline coreset construction of [6] has the following structure: first, a bicriterion
approximation (see Definition 1) is computed over the entire input set P . The bicriterion is
used to estimate for each point p its “sensitivity” sP (p) which, intuitively speaking, measures
how important p is relative to the entire set P . Then, m = m(n, k, ε) points are sampled i.i.d.
according to the distribution of sensitivities. This suggests a two-pass streaming algorithm
with no overhead: in the first pass, construct a bicriterion using an algorithm such as [7]. In
the second pass, sample according to sensitivity distribution, computed using the bicriterion
found in the first pass. Our contribution is showing how these two passes can be combined
into a single-pass.

How do we accomplish both these tasks in parallel? If the sensitivities stayed constant,
we could use weighted reservoir sampling to maintain an i.i.d. sample. However, we cannot
do this for a changing distribution. The sensitivities may decrease because when a new point
is added, all existing points may become less important to the overall stream.

Inductively assume that we have a coreset. Upon receiving the next point, we generate a
new bicriterion which we use to update the sensitivities of the points seen so far. The first
idea is that instead of sampling m points from a distribution such that point p is sampled
with probability sP (p), we built a set which contains point p with probability sP (p) as follows:
let u(p) be a uniform random number in [0, 1), and store p as long as u(p) < msP (p) (recall

1 Recall that a is the exponent in the offline construction’s dependence on ε−1, and n is the length of the
stream.

APPROX/RANDOM 2019
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that sP (p) decreases as more points are added to P ). With high probability, we return a set
of Θ(m) points. The problem is that this set is not an i.i.d sample. To see this, consider the
fact that unlike an i.i.d. sample, this set cannot have repeated points.

To solve this problem, we repeat the above process independently in parallel m times,
where each process should sample exactly 1 point. The first issue is that the total probability
t =

∑
p∈P sP (p), which must be scaled to 1, is only known up to a factor of k. Even after

solving this, and assuming we have at least m trials that return exactly one point, they do
not follow the original distribution. Indeed, the probability of a trial returning only one point
p is the probability of drawing point p multiplied the probabilities of not drawing all other
points. The rough idea to overcome this is that we distort the probabilities by computing the
inverse to this transformation such that the final probabilities follow the desired distribution.

We prove our result for ρ-metric k-median. As stated before, it is well-known that mostM -
estimators can be recast as a ρ-metric k-median problem for a low value of ρ [14]. See Table 1
for a list of several common M -estimators along with the ρ-metric they satisfy. For many
M -estimators, ours is the first coreset result over data streams besides merge-and-reduce.

Table 1 List of several examples to which our result applies. An M -estimator with ψ-function
ψ(x) induces a clustering problem with cost ψ(d(p, c)) for a point p with nearest center c. The
ρ-value is calculated from the ψ-function, making the column redundant but non-trivial to compute.

Estimator ψ-function ρ

k-median x 1
k-means x2 2

Huber ψ(x) =

{
x2

2 if x < 1
x− 1

2 if x ≥ 1
2

Cauchy ψ(x) = log(1 + x2) 2

Tukey ψ(x) =

{
1
6 (1− (1− x2)3) if x < 1
1
6 if x ≥ 1

3

4 Related Work

Table 2 summarizes previous work along with our current results. By far, the most widely-
studied problems in this class have been the k-median and k-means functions. In general,
the extension to arbitrary M -estimators is non-trivial; the first such result was [14]. Our
approach naturally lends itself to this extension. M -estimators are highly important for
noisy data or data with outliers. As one example, Huber’s estimator is widely used in the
statistics community [17, 20]. It was written that “this estimator is so satisfactory that it
has been recommended for almost all situations” [22]. Our results work not only for Huber’s
estimator but for all M -estimators, such as the Cauchy and Tukey biweight functions which
are also widely-used functions.

Note that in the below table, Õ notation is used to write in terms of d, ε, k, and logn
(therefore hiding factors of log logn but not logn).

k-means

In the k-means problem we wish to compute a set k of centers (points) in some metric space,
such that the sum of squared distances to the input points is minimized, where each input
point is assigned to its nearest center. The corresponding coreset is a positively weighted
subset of points that approximates this cost to every given set of k centers. Deterministic
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Table 2 Summary of Related Work. Note that Metric M -estimators are the most general, and
these results apply to all other categories.

Problem Streaming Size Paper
Euclidean k-means O(kε−d logd+2 n) [19]
Euclidean k-means O(k3ε−(d+1) logd+2 n) [18]
Euclidean k-means O(dk2ε−2 log8 n) [10]
Euclidean k-means O(dk log kε−4 log5 n) [13]
Euclidean k-means Õ((d/ε)O(d)k logO(d) n) [1]
Metric k-means O(ε−2k2 log8 n) [11]
Metric k-means O(ε−4k log k log6 n) [13]

Euclidean k-median O(dk2ε−2 log8 n) [10]
Euclidean k-median O(kε−d logd+2 n) [19]
Euclidean k-median O(k2ε−O(d) logd+1 n) [18]
Euclidean k-median O(dε−2k log k log3 n) [13]
Metric k-median O(k2ε−2 log8 n) [10]
Metric k-median O(ε−2k log k log4 n) [13]

Euclidean M -estimators O(ε−2kO(k)d2 log5 n) [14]
Metric M -estimators O(ε−2kO(k) log7 n) [14]
Metric M -estimators O(ε−2k log k logn) This paper

coresets of size exponential in d were first suggested by Har-Peled and Mazumdar in [19].
The first coreset construction of size polynomial in d was suggested by Ke-Chen in [10] using
several sets of uniform sampling. Other high-dimensional results (e.g. [2]) are also known in
the streaming setting.

Streaming

The metric results of [10, 13] and Euclidean results of [10, 19, 18, 13] that rely on merge-
and-reduce appear in Table 2. In Euclidean space, a more diverse set of stronger results is
known. In particular, coreset constructions are known that do not begin with a bicriterion
solution, and whose streaming variant does not rely on merge-and-reduce [1]. Sketches have
been given in [12] for M -estimators in Euclidean space. With the additional assumption
that points lie on a discrete Euclidean grid {1, . . . ,∆}d, alternative techniques are known for
k-means and other problems, even when the stream allows the deletion of points [15].

4.1 Merge and Reduce Tree

We briefly summarize the previous technique for maintaining coresets in the streaming setting
due to Har-Peled and Mazumdar [19] and Bentley and Sax [5]. In this method, a merge-and-
reduce tree is built by using an offline coreset construction as a blackbox. Previously, this
was the only known technique for building a streaming coreset for many metric problems. It
relies solely on the following two properties which can be easily verified:
1. Merge: The union of (k, ε)-coresets is a (k, ε)-coreset.
2. Reduce: A (k, ε)-coreset of a (k, ε′)-coreset is a (k, ε+ ε′ + εε′)-coreset.
The merge-and-reduce tree works as follows. There are buckets Ti for i ≥ 0. In each step,
the bucket T0 takes in a segment of O(1) points from the stream. Then the tree works like
counting in binary: whenever buckets T0 to Ti−1 are full, these i buckets are merged and
then reduced by taking a (k, ε

logn )-coreset of their union and storing the result in Ti.

APPROX/RANDOM 2019



62:6 Streaming Coreset Constructions for M-Estimators

Let s be the space of offline construction, which depends on ε as ε−a. At the end of
the stream, O(logn) buckets have been used and each bucket uses O(s loga n) space; this
incurs a multiplicative overhead of Θ(loga+1 n) in the storage requirement. The second factor
comes from using the accuracy parameter ε

logn , which is necessary by Property 2 since the
construction will be compounded O(logn) times. Due to this compounding, the runtime is
multiplied by a factor of O(logn).

5 Streaming Algorithm

We present a streaming algorithm to construct a coreset for ρ-metric k-median. Our method
combines a streaming bicriterion algorithm [7, 21] and a batch coreset construction [13]
to create a streaming coreset algorithm. The space requirements are combined addivitely,
therefore ensuring no overhead.

We now state our main theorem. The probability of success 1− δ typically has one of two
meanings: that the construction succeeds at the end of the stream (a weaker result), or that
the construction succeeds at every intermediate point of the stream (a stronger result). Our
theorem gives the stronger result, maintaining a valid coreset at every point of the stream.
Our space and time bounds follow the convention that a point can be stored in O(1) space.

I Theorem 3 (Main Theorem). Let ε, δ ∈ (0, 1). Given the problem of k-median clustering
in a ρ-metric space for ρ = O(1), there exists an insertion-only streaming algorithm that
maintains a (k, ε)-coreset on a stream of n points while requiring O(ε−2k(log k logn+ log 1

δ ))
space and worst-case update time, and succeeds at every point of the stream with probability
at least 1− δ.

In Section 5.1 we introduce the streaming bicriterion algorithm. Then in Section 5.2 we
review the offline coreset construction we will be adapting to the streaming setting. We
prove in Section 5.3 how to use the bicriterion to bound the importance of points. Finally
we present the streaming algorithm in Section 5.4.

5.1 Streaming Bicriterion Algorithm
Let Pi denote the prefix of the stream {p1, . . . , pi}. The entire stream P is then Pn. Recall
that in the streaming setting, we receive each point sequentially in the order (p1, p2, . . .). We
use the function 1 : P → {1} to map every point to unit weight. For ease of exposition we
assume the input set is weighted as (P,1) and that all points of P are distinct. Consider the
moment when the first i points have arrived, meaning that the prefix Pi is the current set of
arrived points. The algorithm A of [7] provides an (O(1), O(logn))-approximation of Pi. We
now restate their general result, adding several details (such as the outputs Li and πi) that
were merely internal details for them but will be crucial for us.

I Theorem 4 ([7], restated). Let α, γ > 1 be absolute constants. Define B0 = ∅. Let
(p1, . . . , pn) be a stream of at most n points in a ρ-metric space for ρ = O(1). Let n, k ≥ 1,
δ ∈ (0, 1) be input parameters. Upon receiving point pi, algorithm A(k, n, δ) returns a
weighted set (Bi, wi), a value Li > 0, and a map πi : Bi−1 ∪ {pi} → Bi. Define fi(pj) =
πi(πi−1(. . . πj(pj) . . .)). For any integer i ∈ [n] we have with probability at least 1− δ that
the following three statements hold.
1. Li ≤ OPTk(Pi)
2.
∑
p∈Pi

D(p, fi(p)) ≤ αLi
3. (Bi, wi) along with the map fi :Pi → Bi is an (α, γ(logn+log 1

δ ))-approximation for (P,1).
The algorithm requires O(γ(logn+ log 1

δ )) space and update time.
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Algorithm A reduces the number of distinct points by combining nearby points into a
single point of higher weight.

5.2 Offline Coreset Construction

In the offline coreset construction of [6], the sensitivity of a point p ∈ P in a ρ-metric space
(X , D) is defined as:

sP (p) = max
Z∈Xk

D(p, Z)∑
q∈P D(q, Z)

Notice that 0 ≤ sP (p) ≤ 1 for every point p ∈ P , and that the sensitivity of a point p is
relative to the set P it belongs to. When context is clear, we omit the subscript and write
s(p). Computing s(p) may be difficult, but we can give an upper bound s′(p) ∈ [s(p), 1].
Define the total sensitivity t′ =

∑
p∈P s

′(p). We will apply the following theorem:

I Theorem 5 (proven in [6]). Let P be a set of n points, and define s′ : P → [0, 1] and t′ as
above. Let δ, ε ∈ (0, 1) be input parameters. Consider a distribution S supported on P where
p has weight s′(p)/t′. Define m′ = d3t′ε−2(logn log t′ + log(1/δ))e. Let Q be an i.i.d. sample
of at least m′ points from S. Define a weight function v : Q→ [0,∞) as v(q) = (|Q|s′(q))−1.
With probability at least 1− δ, (Q, v) is a (k, ε)-coreset for P .

One may be skeptical why only an upper bound is necessary, wondering why not simply
set s′(p) = 1. This does indeed work, but has the undesirable effect of setting t′ = n and
therefore results in a coreset of Ω(n) points. More generally, the coreset is useless if t′ is
large since the size of Q may be comparable to the size of P . In the next subsection, we show
how to bound t′ = O(ρ2k). Observe that neither k nor ρ appear explicitly in the sample size,
but they both appear implicitly through the value of t′.

5.3 Bounding the Sensitivity

Let the map p 7→ p′ be an (σ, λ)-approximation of P for some constants σ and λ. Define
P (p) = {q ∈ P : q′ = p′} to be the cluster containing p.

I Lemma 6. Let the map p 7→ p′ define an (σ, λ)-approximation for the k-median clustering
of P . For every point p ∈ P :

s(p) ≤ ρσD(p, p′)∑
q∈P D(q, q′) + ρ2(σ + 1)

|P (p)|

Proof. For an arbitrary Z ∈ X k we need to provide a uniform bound for

D(p, Z)∑
q∈P D(q, Z) ≤

ρD(p, p′)∑
q∈P D(q, Z) + ρD(p′, Z)∑

q∈P D(q, Z)

≤ σρD(p, p′)∑
q∈P D(q, q′) + ρD(p′, Z)∑

q∈P D(q, Z) (1)

where the second inequality holds because
∑
q∈P D(q, q′) ≤ σOPT(P ) ≤ σ

∑
q∈P D(q, Z). To

APPROX/RANDOM 2019
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bound the last term, recall that q′ = p′ for all q ∈ P (p) so:

D(p′, Z)|P (p)| =
∑

q∈P (p)

D(p′, Z) =
∑

q∈P (p)

D(q′, Z)

≤ ρ
∑

q∈P (p)

(D(q′, q) +D(q, Z))

≤ ρ
∑
q∈P

D(q′, q) + ρ
∑

q∈P (p)

D(q, Z)

≤ ρσ
∑
q∈P

D(q, Z) + ρ
∑

q∈P (p)

D(q, Z)

≤ ρ(σ + 1)
∑
q∈P

D(q, Z)

Dividing by |P (p)|
∑
q∈P D(q, Z) gives

D(p′, Z)∑
q∈P D(q, Z) ≤

ρ(σ + 1)
|P (p)|

Substituting this in (1) yields the desired result. J

We will use Lemma 6 to define our upper bound s′(p). An immediate but extremely
important consequence of Lemma 6 is that t′ =

∑
p∈P s

′(p) = ρσ+ ρ2(σ+ 1)λk. This can be
seen by directly summing the formula given by the lemma.

5.4 Streaming Algorithm
Consider the prefix Pi which is the input after the first i points have arrived. For ease of
notation, we write s′i(p) to refer to s′Pi

(p), an upper bound on the sensitivity of p with respect
to the first i points. After processing first i points of the stream, Algorithm 1 constructs a
set (Qi, vi). With probability at least 1− δ, (Qi, vi) is a (k, ε)-coreset for Pi for every i ∈ [n].
This algorithm will satisfy the claims of Theorem 3.

5.4.1 Overview of the algorithm
The algorithm initializes on Lines 1-9. The main loop of Lines 10-38 processes the stream,
accepting one point per iteration. For each iteration, the first step is to process the point
with algorithm A (Line 11) then compute a (O(1), O(1))-bicriterion approximation on its
output (Line 18). On Line 23 we use this to maintain an upper bound s′i(p) on the sensitivity
of a point p with respect to Pi. In the analysis, let t′i =

∑i
`=1 s

′
i(p`) be the upper bound on

the total sensitivity of Pi. We now define Si, the distribution from which we will draw our
sample. Note that Si is non-deterministic, since the values of s′i(p) (and therefore t′i) depend
on the randomness of Algorithm A as well as any possible randomness used in the bicriterion
approximation.

I Definition 7. The probability distribution Si is supported on Pi and assigns probability
s′i(p)/t′i to point p.

By Theorem 5, it suffices to sample m′i = d3t′iε−2(logn log t′i + log(n/δ))e points i.i.d.
from Si to construct a coreset for (Pi,1) with probability at least 1 − δ/n. On Line 2 we
define t◦ to upper bound the maximal value of t′i over any set of points in X . Likewise on
Line 3 we set m◦ = d3t◦ε−2(logn log t◦+ log(n/δ))e which is an upper bound on the required
sample size.
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We maintain Θ(k(logn log k + log n
δ )) sets My, each containing a sample of the stream.

We hope that many of these samples contain only a single point, because if so then by
Lemma 6 the point follows the distribution Si. With high probability, at least m′i sets will
be singletons, and so we take their union to construct the coreset (Qi, vi).

Memory considerations

Due to memory constraints, we only store the maps gi, fi, uy, zi, and s′i for points in
∪y∈YMy. In the analysis only, we use fi, zi, and s′i(p) for points that have been deleted.
This refers to the value that would have been set if we continued executing Lines 21-23 for p.

5.4.2 Proof of correctness
Using Algorithm A we obtain an (α, γ(logn+ log n

δ ))-approximation (Bi, wi) with the map
πi : Bi−1 ∪ {pi} → Bi which we use to obtain the map fi : Pi → Bi. Line 23 runs an offline
(γ, λ)-approximation algorithm on Bi, and we obtain weighted set (Ci, vi). The following
lemma shows that (Ci, vi) is a (σ, λ)-approximation for Pi, where σ = ρα+ 2ρ2γ(α+ 1) as
defined on Line 1. The clustering map will be gi ◦ fi : Pi → Bi → Ci.

I Lemma 8. Assume that algorithm A has not failed. Then (Ci, wCi ) with gi ◦ fi : Pi → Ci
is a (σ, λ)-approximation of Pi.

Proof. As the context is clear, we drop the subscript i. By Theorem 4, (B,wB) with f : P →
B is an (α, β)-approximation of P where β = γ(logn+ log n

δ ). Also, (C,wc) with g : B → C

is the (γ, λ)-approximation of B. In the following, all sums will be taken over all p ∈ P .
The hypotheses state that

∑
D(p, f(p)) ≤ αOPTk(P ) and

∑
D(f(p), g(f(p))) ≤ γOPTk(B).

Let P ∗ be an optimal clustering of P , that is
∑
D(p, P ∗) = OPTk(P ). Then 1

2 OPTk(B) ≤∑
D(f(p), P ∗) ≤ ρ

∑
(D(f(p), p)+D(p, P ∗)) ≤ ρ(α+1)OPT(P ). The factor of 1

2 comes from
the fact that OPT(B) is defined using centers restricted to B (see [16] for details). We now
write

∑
D(p, g(f(p))) ≤ ρ

∑
(D(p, f(p)) +D(f(p), g(f(p)))) ≤ (ρα+ 2ρ2γ(α+ 1))OPTk(P )

as desired. J

To use Lemma 6 to determine s′i(p), we will compute the cluster sizes |Pi(p)| and estimate
the clustering cost

∑
q∈P D(q, q′) by Li. We must bound the clustering cost from below

because we require s′i(p) to be an upper-bound of si(p).

I Lemma 9. Assume that algorithm A has not failed and that (Qi−1, vi−1) is a (k, ε)-coreset
for Pi−1. Then zi(p) ≥ si(p) for every p ∈ Pi.

Proof. For the first claim, consider Lemma 6 applied with the clustering map gi◦fi : Pi → Ci.
We write p′ = gi ◦ fi(p). By Lemma 8, this map is a (σ, λ)-approximation of Pi. Observe that
|Pi(p)| (from Lemma 6) is precisely wCi (gi◦fi(p)) since the weight of a point c is determined by
how many points in Pi were clustered to c. By Theorem 4, Li ≤ OPTk(Pi) ≤ COST(Pi,1, Ci).
We may then write:

zi(r) = ρσD(r, gi ◦ fi(r))
Li

+ ρ2(σ + 1)
wCi (gi ◦ fi(r))

≥ ρσD(r, r′)∑
p∈Pi

D(p, p′) + ρ2(σ + 1)
|Pi(r)|

≥ si(r)

where the last inequality follows by Lemma 6. J
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Algorithm 1 Input: parameters ε, δ ∈ (0, 1) and n, k ∈ N. A stream of n points in a ρ-metric
space. Notes: A(·, ·, ·) denotes the blackbox algorithm from Theorem 4 along with its universal
constants α and γ. Line 18 uses any RAM-model (O(1), O(1))-approximation such as [3].

1: σ ← ρα+ 2ρ2γ(α+ 1)
2: t◦ ← ρσα+ ρ2(σ + 1)λk
3: m◦ ← d3t◦ε−2(logn log t◦ + log(n/δ))e
4: Q0 ← ∅
5: Initialize A(k, n, δ/n)
6: Y ← {1, . . . , 8m◦}
7: for each y ∈ Y do
8: My ← ∅
9: end for
10: for the next point pi from the stream do
11: (Bi, wBi , πi, Li)← update A with point pi
12: for each y ∈ Y do
13: uy(pi)← uniform random number from [0, 1)
14: My ←My ∪ {pi}
15: end for
16: fi−1(pi)← pi
17: s′i−1(pi)← 1
18: (Ci, wCi , gi)← (γ, λ)-approximation of (Bi, wBi )
19: R← ∪yMy

20: for each r ∈ R do
21: fi(r)← πi ◦ fi−1(r)
22: zi(r)← ρσD(r,gi◦fi(r))

Li
+ ρ2(σ+1)

wC
i

(gi◦fi(r))
23: s′i(r)← min(s′i−1(r), zi(r))
24: end for
25: for each y ∈ Y do
26: for each q ∈My do
27: if uy(q) > s′i(q)

s′
i
(q)+t◦ then

28: Delete q from My

29: end if
30: end for
31: end for
32: Γi ← {y ∈ Y : |My| = 1}
33: Qi ← ∪y∈Γi

My

34: for each q ∈ Qi do
35: vi(q)← (|Γi|s′i(q))−1

36: end for
37: return (Qi, vi)
38: end for
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The implication is that our upper bound on sensitivity is valid, as we now prove formally:

I Lemma 10. Assume that algorithm A has not failed and that (Qi−1, vi−1) is a (k, ε)-coreset
for Pi−1. Then s′i(p) ≥ si(p) for every p ∈ Pi.

Proof. Fix a point p ∈ Pi. We see from Line 23 that s′i(p) = zj(p) for some j ≤ i. Lemma 11
shows that zj(p) ≥ sj(p). Observe directly from the definition of sensitivity that si(p) ≤ sj(p)
for any j ≤ i. Combining these shows that s′i(p) = zj(p) ≥ sj(p) ≥ si(p). We conclude that
s′i(p) ≥ si(p) for all p ∈ Pi. J

For each point p, the value of s′i(p) is non-increasing in i. This is because s′i(p) is defined
as the minimum of itself and a new value on Line 23. It follows from the monotonicity of
f(x) = x

x+1 that s′i(r)
s′

i
(r)+t◦ is also non-increasing in i. Therefore once the deletion condition

on Line 27 becomes satisfied, it remains satisfied forever. This is essential because after
deleting a point from memory, it can never be retrieved again. We can characterize M (i)

y

without reference to the streaming setting: M (i)
y = {p ∈ Pi : uy(p) ≤ s′i(p)

s′
i
(p)+t◦ }. This has the

important implication that Pr(p ∈M (i)
y ) = s′i(p)

s′
i
(p)+t◦ .

I Lemma 11. Assume that algorithm A has not failed and that (Qi−1, vi−1) is a (k, ε)-coreset
for Pi−1. Then

∑
p∈Pi

zi(p) < t◦.

Proof. The value of t◦ is defined on Line 2 as ρσα+ ρ2(σ + 1)λk.

∑
p∈Pi

zi(p) =
∑
p∈Pi

ρσD(p, gi ◦ fi(p))
Li

+ ρ2(σ + 1)
wCi (gi ◦ fi(p))

≤ ρσαLi
Li

+ ρ2(σ + 1)λk

≤ ρσα+ ρ2(σ + 1)λk
= t◦

where the first inequality comes from Lemma 8 and Theorem 4. Note that we have summed
the second term using the fact that a center c ∈ Ci with weight wCi (c) has exactly wCi (c)
points of Pi clustered to it. Therefore we may re-write the sum:∑

p∈Pi

1
wCi (gi ◦ fi(p))

=
∑
c∈Ci

1 = λk J

To construct a coreset by sampling from Si, the algorithm take the union of those My for
y ∈ Y that are singletons. Any set My that is either empty or contains more than one point
will be ignored, but still kept track of since it may later become a singleton. We now show
that if a sample My contains a single point, then it follows the distribution Si. Let M (i)

y

denote the state of My after the prefix Pi has been processed, and let Pr(A : B) denote the
probability of event A conditioned on event B.

I Lemma 12. For any p ∈ Pi, Pr(M (i)
y = {p} : |M (i)

y | = 1) = s′i(p)/
∑i
`=1 s

′
i(p`).

Proof. Define α` = s′i(p`)
s′

i
(p`)+t◦ and Ψ =

∏i
`=1(1 − α`). For z ∈ [i] let Ez denote the event

that M (i)
y = {pz}. The probability that the sampler contains only pz means that it failed to

sample all p` for ` 6= z, meaning that Pr(Ez) = αzΨ/(1− αz) = s′i(pz)Ψ/t◦. The result is
obtained since:
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Pr(Ez : |M (i)
y | = 1) = Pr(Ez)/Pr(|M (i)

y | = 1)
= Pr(Ez)/Pr(∪i`=1E`)

= Pr(Ez)/
i∑

`=1
Pr(E`)

= s′i(pz)/
i∑

`=1
s′i(p`) J

The significance of Lemma 12 is tantamount. If a sample My contains a singleton, then it
is equivalent to a random draw from Si. Therefore if at least m′i samplers contain a singleton,
taking their union gives us an i.i.d. sample of at least m′i points from Si. This is precisely
what we need to construct a coreset using Theorem 5. However, it remains to show that
we will have enough singleton samplers with high probability. The next lemma begins to
establish this fact.

I Lemma 13. Fix any y ∈ Y and i ∈ [n]. Then P (|M (i)
y | = 1) ≥ t′

4t◦ .

Proof. Let pi be the most recently arrived point, and define α` = s′i(p`)
s′

i
(p`)+t◦ . Observe that

s′i(p`) ≥ 0 implies α` ≤ s′i(p`)/t◦. It follows from Line 27 that Pr(p` ∈My) = α` ≤ s′i(p`)/t◦.
The expected value of |My| is therefore at most

∑i
`=1

1
t◦
s′i(p`) = t′

t◦
. Markov’s inequality

yields Pr(|My| ≥ 2) = Pr(|My| ≥ 2t◦
t′

t′

t◦
) ≤ t′

2t◦ ≤
1
2 .

P (|My| = 1) =
i∑

`=1
P (|My| = {p`})

=
i∑

`=1
α`
∏
z 6=`

(1− αz)

=
i∑

`=1

α`
1− α`

i∏
z=1

(1− αz)

= 1
t◦

(
i∑

`=1
s′i(p`)

)(
i∏

z=1
(1− αz)

)

= t′

t◦
Pr(|My| = 0)

We know that Pr(|My| = 0) + Pr(|My| = 1) + Pr(|My| ≥ 2) = 1, so substitution gives
( t◦t′ + 1)Pr(|My| = 1) + 1

2 ≥ 1. Rearranging this, we obtain Pr(|My| = 1) ≥ 1
2

1
t◦/t′+1 ≥

t′

4t◦
as desired. J

Now that we have provided a lower bound on the probability of any sample My being a
singleton, we move on to lower bound the probability of at least m′i of the samples {My}y∈Y
being singletons. Observe that the {My} are entirely independent. We use a Chernoff bound
to lower bound the size of Γi, defined on Line 32, which is the set of all singleton samples.

I Lemma 14. |Γi| ≥ m′i with probability at least 1− δ/n.

Proof. We see directly from Line 32 that |Γi| is a sum of |Y | independent Bernoulli trials,
each which succeeds with probability at least t′

4t◦ by Lemma 13. By a Chernoff bound,
Pr(|S| ≤ 1

2 |Y |
t′

4t◦ ) ≤ e−|Y |t′/32t◦ . We note that |Y |t′/32t◦ = 8m◦t′/32t◦ ≥ ln(n/δ). Plugging
this into the Chernoff bound yields that |S| ≥ m◦t′/t◦ with probability at least 1− δ/n. We
conclude by noting that m◦t′/t◦ = 3t′(logn log t◦ + log δ

n ) ≥ m′. J
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We now have all the tools to proceed with the proof of Theorem 1. We begin with the
space requirement, then prove correctness.

I Lemma 15. After processing Pi, Algorithm 1 stores O(ε−2k(log k logn + log n
δ )) points

with probability at least 1− δ/n.

Proof. First note that O(logn + log n
δ ) = O(logn + log 1

δ ). By Theorem 4 we know that
A stores O(k(logn + log n

δ )) points deterministically. In addition to the blackbox A, the
algorithm stores the sets My along with a constant amount of satellite data per point.

We showed that E[|My|] ≤ t′/t◦ in the proof of Lemma 13. Directly from Lemma 13, we
lower bound E[|My|] ≥ Pr(|My| = 1) ≥ t′/4t◦. Combining these upper and lower bounds
permits us to write 2m◦t′/t◦ ≤ E[

∑
y∈Y |My|] ≤ 8m◦t′/t◦.

A Chernoff bound can be applied for a high-probability guarantee. The random variable
X =

∑
y∈Y |My| is a sum of |Y |i independent Bernoulli trials, each event being p` ∈ My

for some 1 ≤ ` ≤ i and y ∈ Y . We have the Chernoff bound that Prob[X ≥ (1 + η)µ] ≤
e−η

2µ/(2+η) for any η ≥ 1 where µ = E[X]. Using η = 1, this yields that X < 16m◦ with
probability at least 1− e−2m◦t′/3t◦ < e−2m′/3 < δ/n. J

We now prove correctness, using the following lemma as a tool for our final claim.

I Lemma 16. Assume that algorithm A has not failed and that (Qi−1, vi−1) is a (k, ε)-coreset
for Pi−1. Then (Qi, vi) is a (k, ε) coreset of (Pi,1) with probability at least 1− 3δ/n.

Proof. Lemma 10 shows that Si meets the criteria of Theorem 5 with probability at least
1− δ/n. Lemmas 12 and 14 show that Qi is an i.i.d. sample of at least m′i points from Si
with probability at least 1− δ/n. By Theorem 5, conditioning on the success of the previous
two statements, (Qi, vi) is a (k, ε)-coreset for (Pi,1) with probability at least 1− δ/n. We
arrive at the desired result by applying the union bound. J

We complete the proof of Theorem 3 by induction over each prefix Pi on the following
events: (1) the success of A; (2) that (Qi, vi) is a (k, ε) coreset of (Pi,1); and (3) the storage
requirement holding from Lemma 15. The base cases hold trivially.

By Theorem 4, Algorithm A(n, k, δ/n) will succeed on Pi with probability at least 1−δ/n.
By Lemma 15, the space requirement is maintained with probability at least 1− δ/n. By
Lemma 16, (Qi, vi) is a (k, ε) coreset of (Pi,1) with probability at least 1− 3δ/n. Combining
these pieces, we succeed inductively after processing a single point with probability at least
1− 5δ/n. Therefore we succeed at every step of the entire stream with probability at least
1− 5δ. Theorem 3 follows by scaling δ appropriately.
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